Quasi-Cyclic Codes over Rings

San Ling

School of Physical & Mathematical Sciences
Nanyang Technological University
Singapore

lingsan@ntu.edu.sg
Rings

Quasi-Cyclic Codes over Rings
 Codes over Rings
 Quasi-Cyclic Codes
 The Ring $R(A, m)$
 Fourier Transform & Trace Formula

Applications

1-Generator Codes
 Alternative Descriptions of Quasi-Cyclic Codes
 1-Generator Quasi-Cyclic Codes
Rings

A: commutative ring with identity 1

A **local**: if it has a unique maximal ideal \(M \).

\(k := A/M \) is a field.
A: commutative ring with identity 1

A local: if it has a unique maximal ideal M.

$k := A/M$ is a field.

Hensel lifting: Factorizations fg of elements h of $k[X]$ can be "lifted" to factorizations FG of H in $A[X]$ in such a way that f, g, h correspond to F, G, H respectively under reduction modulo M.
Chain Rings

Chain ring: both local and principal.

A local ring is a chain ring

\[
\uparrow
\]

maximal ideal has a single generator \(t \), say: \(M = (t) \).
Chain Rings

Chain ring: both local and principal.

A local ring is a chain ring

\[M = (t). \]

\[A \supset (t) \supset (t^2) \supset \cdots \supset (t^{d-1}) \supset (t^d) = (0). \]

\(d \): depth of \(A \).

If \(k \) has \(q \) elements, then \(A/(t^i) \) has \(q^i \) elements, so \(A \) has \(q^d \) elements.
Chain Rings

Example

1. Finite fields \mathbb{F}_q
2. Integer rings \mathbb{Z}_{p^r}
3. Galois rings $GR(p^r, m)$
4. $\mathbb{F}_q[u]/(u^k)$
Linear code C of length n over A: an A-submodule of A^n, i.e.,

- $x, y \in C \Rightarrow x + y \in C$;
- $\forall \lambda \in A, \ x \in C \Rightarrow \lambda x \in C$.
Codes over Rings

Linear code C of length n over A: an A-submodule of A^n, i.e.,

- $x, y \in C \Rightarrow x + y \in C$;
- $\forall \lambda \in A, x \in C \Rightarrow \lambda x \in C$,

T: standard shift operator on A^n

$$T(a_0, a_1, \ldots, a_{n-1}) = (a_{n-1}, a_0, \ldots, a_{n-2}).$$

C quasi-cyclic of index ℓ or ℓ-quasi-cyclic: invariant under T^ℓ.
Assume: ℓ divides n
$m := n/\ell$: co-index.
Example

- If $\ell = 2$ and first circulant block is identity matrix, code equivalent to a so-called pure double circulant code.
- Up to equivalence, generator matrix of such a code consists of $m \times m$ circulant matrices.
Quasi-Cyclic Codes

m: positive integer.

$R := R(A, m) = A[Y]/(Y^m - 1)$.

C: quasi-cyclic code over A of length ℓm and index ℓ.

$c = (c_0, c_1, \ldots, c_{0,\ell-1}, c_{10}, \ldots, c_{1,\ell-1}, \ldots, c_{m-1,0}, \ldots, c_{m-1,\ell-1}) \in C$
Quasi-Cyclic Codes

m: positive integer.

$R := R(A, m) = A[Y]/(Y^m - 1)$.

C: quasi-cyclic code over A of length ℓm and index ℓ.

$c = (c_{00}, c_{01}, \ldots, c_{0,\ell-1}, c_{10}, \ldots, c_{1,\ell-1}, \ldots, c_{m-1,0}, \ldots, c_{m-1,\ell-1}) \in C$

Define $\phi : A^{\ell m} \rightarrow R^\ell$ by

$$\phi(c) = (c_0(Y), c_1(Y), \ldots, c_{\ell-1}(Y)) \in R^\ell,$$

where $c_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in R$.

$\phi(C)$: image of C under ϕ.
Quasi-Cyclic Codes

Lemma

\(\phi \) induces one-to-one correspondence

quasi-cyclic codes over \(A \) **of index** \(\ell \) **and length** \(\ell m \)

\[\updownarrow \]

linear codes over \(R \) **of length** \(\ell \)
Proof

C linear $\Rightarrow \phi(C)$ closed under scalar multiplication by elements of A.

Since $Y^m = 1$ in R,

$$Yc_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^{i+1} = \sum_{i=0}^{m-1} c_{i-1,j} Y^i,$$

subscripts taken modulo m.
Proof continued

\[(Yc_0(Y), Yc_1(Y), \ldots, Yc_{\ell-1}(Y)) \in R^\ell\]

corresponds to

\[
\left(c_{m-1,0}, c_{m-1,1}, \ldots, c_{m-1,\ell-1}, c_{00}, c_{01}, \ldots, c_{0,\ell-1}, \ldots, c_{m-2,0}, \ldots, c_{m-2,\ell-1}\right) \in A^{\ell m},
\]

which is in \(C\) since \(C\) is quasi-cyclic of index \(\ell\).

Therefore, \(\phi(C)\) closed under multiplication by \(Y\).

Hence \(\phi(C)\) is \(R\)-submodule of \(R^\ell\).
Proof continued

\[(Yc_0(Y), Yc_1(Y), \ldots, Yc_{\ell-1}(Y)) \in R^\ell\]

corresponds to

\[\left(c_{m-1,0}, c_{m-1,1}, \ldots, c_{m-1,\ell-1}, c_{00}, c_{01}, \ldots, c_{0,\ell-1}, \ldots, c_{m-2,0}, \ldots, c_{m-2,\ell-1}\right) \in A^{\ell m},\]

which is in \(C\) since \(C\) is quasi-cyclic of index \(\ell\).

Therefore, \(\phi(C)\) closed under multiplication by \(Y\).

Hence \(\phi(C)\) is \(R\)-submodule of \(R^\ell\).

For converse, reverse above argument.
Quasi-Cyclic Codes

Euclidean inner product on $A^{\ell m}$: for

$$a = (a_{00}, a_{01}, \ldots, a_{0,\ell-1}, a_{10}, \ldots, a_{1,\ell-1}, \ldots, a_{m-1,0}, \ldots, a_{m-1,\ell-1})$$

and

$$b = (b_{00}, b_{01}, \ldots, b_{0,\ell-1}, b_{10}, \ldots, b_{1,\ell-1}, \ldots, b_{m-1,0}, \ldots, b_{m-1,\ell-1}),$$

define

$$a \cdot b = \sum_{i=0}^{m-1} \sum_{j=0}^{\ell-1} a_{ij} b_{ij}.$$
Conjugation map $\overline{\cdot}$ on R: identity on the elements of A and sends Y to $Y^{-1} = Y^{m-1}$, and extended linearly.
Conjugation map $\bar{\cdot}$ on R: identity on the elements of A and sends Y to $Y^{-1} = Y^{m-1}$, and extended linearly.

Hermitian inner product on R^ℓ: for

$$\mathbf{x} = (x_0, \ldots, x_{\ell-1}) \text{ and } \mathbf{y} = (y_0, \ldots, y_{\ell-1}),$$

$$\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=0}^{\ell-1} x_j \overline{y_j}.$$
Proposition

Let \(a, b \in A^m \). Then

\[
(T^k(a)) \cdot b = 0 \quad \text{for all } 0 \leq k \leq m - 1
\]

\(\iff \)

\[
\langle \phi(a), \phi(b) \rangle = 0.
\]
Proof

Condition $\langle \phi(a), \phi(b) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j b_j = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right). \quad (1)$$
Proof

Condition $\langle \phi(a), \phi(b) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j b_j = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right). \quad (1)$$

Comparing coefficients of Y^h, (1) equivalent to

$$\sum_{j=0}^{\ell-1} \sum_{i=0}^{m-1} a_{i+h,j} b_{ij} = 0, \quad \text{for all } 0 \leq h \leq m-1, \quad (2)$$

subscripts taken modulo m.

San Ling Quasi-Cyclic Codes over Rings
Proof

Condition $\langle \phi(a), \phi(b) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j b_j = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right). \quad (1)$$

Comparing coefficients of Y^h, (1) equivalent to

$$\sum_{j=0}^{\ell-1} \sum_{i=0}^{m-1} a_{i+h,j} b_{ij} = 0, \quad \text{for all } 0 \leq h \leq m - 1, \quad (2)$$

subscripts taken modulo m.

(2) means $(T^{-\ell h}(a)) \cdot b = 0$.

San Ling Quasi-Cyclic Codes over Rings
Proof

Since $T^{-\ell h} = T^{\ell(m-h)}$, it follows that (2), and hence $\langle \phi(a), \phi(b) \rangle = 0$, is equivalent to $(T^{\ell k}(a)) \cdot b = 0$ for all $0 \leq k \leq m - 1$.
Corollary

C: quasi-cyclic code over A of length ℓm and of index ℓ

$\phi(C)$: its image in R^ℓ under ϕ.

Then $\phi(C)^\perp = \phi(C^\perp)$,

where dual in $A^{\ell m}$ is wrt Euclidean inner product,

while dual in R^ℓ is wrt Hermitian inner product.

In particular,

C over A self-dual wrt Euclidean inner product

\Leftrightarrow

$\phi(C)$ over R self-dual wrt Hermitian inner product.
The Ring $R(A, m)$

When $m > 1$,

$R(A, m) = A[Y]/(Y^m - 1)$ is never a local ring.

But always decomposes into product of local rings.
The Ring $R(A, m)$

When $m > 1$, $R(A, m) = A[Y]/(Y^m - 1)$ is never a local ring. But always decomposes into product of local rings.

Characteristic of A: p^n (p prime).

Write $m = p^a m'$, where $(m', p) = 1$.

$Y^{m'} - 1$ factors into distinct irreducible factors in $k[Y]$.
The Ring $R(A, m)$

When $m > 1$,

$$R(A, m) = A[Y]/(Y^m - 1)$$

is never a local ring.

But always decomposes into product of local rings.

Characteristic of A: p^n (p prime).

Write $m = p^a m'$, where $(m', p) = 1$.

$Y^{m'} - 1$ factors into distinct irreducible factors in $k[Y]$.

By Hensel lifting, may write

$$Y^{m'} - 1 = f_1 f_2 \cdots f_r \in A[Y],$$

f_j: distinct basic irreducible polynomials.
The Ring $R(A, m)$

Product unique:
if $Y^m - 1 = f'_1 f'_2 \cdots f'_s$ is another decomposition into basic irreducible polynomials, then $r = s$ and, after suitable renumbering of the f'_j's, f_j is associate of f'_j, for each $1 \leq j \leq r$.
The Ring $R(A, m)$

f: polynomial
f^*: its reciprocal polynomial
Note: $(f^*)^* = f$.
The Ring $R(A, m)$

f: polynomial
f^*: its reciprocal polynomial
Note: $(f^*)^* = f$.

$$Y^{m'} - 1 = -f_1^* f_2^* \cdots f_r^*.$$

f basic irreducible \Rightarrow so is f^*.

By uniqueness of decomposition

$$Y^{m'} - 1 = \delta g_1 \cdots g_s h_1 h_1^* \cdots h_t h_t^*,$$

δ: unit in A,

g_1, \ldots, g_s: those f_j's associate to their own reciprocals,

$h_1, h_1^*, \ldots, h_t, h_t^*$: remaining f_j's grouped in pairs.
The Ring $R(A, m)$

Suppose further:
if characteristic of A is p^n ($n > 1$), then $a = 0$, i.e., $m = m'$ relatively prime to p.

When characteristic of A is p (e.g., finite field), m need not be relatively prime to p.
Suppose further:
if characteristic of A is $p^n \ (n > 1)$, then $a = 0$,
i.e., $m = m'$ relatively prime to p.

When characteristic of A is p (e.g., finite field), m need not be
relatively prime to p.
Then

$$Y^m - 1 = Y^{p^a m'} - 1 = (Y^{m'} - 1)^{p^a}$$

$$= \delta^{p^a} g_1^{p^a} \cdots g_s^{p^a} h_1^{p^a} (h_1^*)^{p^a} \cdots h_t^{p^a} (h_t^*)^{p^a} \in A[Y].$$
Consequently,

\[R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}} \right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h^*_j)^{p^a}} \right) \right), \]

(3)

(with coordinatewise addition and multiplication).
Consequently,

\[
R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}} \right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}} \right) \right),
\]

(3)

(with coordinate-wise addition and multiplication).

\(G_i := \frac{A[Y]}{(g_i)^{p^a}}, \ H'_j := \frac{A[Y]}{(h_j)^{p^a}}, \ H''_j := \frac{A[Y]}{(h_j^*)^{p^a}} \)

\[
R^\ell = \left(\bigoplus_{i=1}^{s} G_i^\ell \right) \oplus \left(\bigoplus_{j=1}^{t} \left(H'_j^\ell \oplus H''_j^\ell \right) \right).
\]
Every R-linear code C of length ℓ can be decomposed as

$$
C = \left(\bigoplus_{i=1}^{s} C_i \right) \oplus \left(\bigoplus_{j=1}^{t} \left(C'_j \oplus C''_j \right) \right),
$$

where

- C_i: linear code over G_i of length ℓ,
- C'_j: linear code over H'_j of length ℓ and
- C''_j: linear code over H''_j of length ℓ.
Every element of R may be written as $c(Y)$ for some polynomial $c \in A[Y]$.

$$R = \left(\bigoplus_{i=1}^{s} G_i \right) \oplus \left(\bigoplus_{j=1}^{t} (H'_j \oplus H''_j) \right).$$

Hence,

$$c(Y) = (c_1(Y), \ldots, c_s(Y), c'_1(Y), c''_1(Y), \ldots, c'_t(Y), c''_t(Y)), \quad (4)$$

$c_i(Y) \in G_i \ (1 \leq i \leq s)$, $c'_j(Y) \in H'_j$ and $c''_j(Y) \in H''_j \ (1 \leq j \leq t)$.
The Ring $R(A, m)$

Recall “conjugate” map $Y \mapsto Y^{-1}$ in R.

For $f \in A[Y]$ dividing $Y^m - 1$, have isomorphism

$$
\frac{A[Y]}{(f)} \longrightarrow \frac{A[Y]}{(f^*)}
$$

$$
c(Y) + (f) \longmapsto c(Y^{-1}) + (f^*).
$$

(Note: $Y^{-1} = Y^{m-1}$.)
The Ring $R(A, m)$

Recall “conjugate” map $Y \mapsto Y^{-1}$ in R.

For $f \in A[Y]$ dividing $Y^m - 1$, have isomorphism

\[
\frac{A[Y]}{(f)} \longrightarrow \frac{A[Y]}{(f^*)}
\]

\[
c(Y) + (f) \longmapsto c(Y^{-1}) + (f^*).
\]

(Note: $Y^{-1} = Y^{m-1}$.)

When f and f^* are associates, map $Y \mapsto Y^{-1}$ induces automorphism of $A[Y]/(f)$.

For $r \in A[Y]/(f)$, \bar{r}: image under this map. When $\deg(f) = 1$, induced map is identity, so $\bar{r} = r$.

The Ring $R(A, m)$

Let

$$\mathbf{r} = (r_1, \ldots, r_s, r'_1, r''_1, \ldots, r'_t, r''_t),$$

where $r_i \in G_i$ $(1 \leq i \leq s)$, $r'_j \in H'_j$ and $r''_j \in H''_j$ $(1 \leq j \leq t)$.

Then

$$\overline{\mathbf{r}} = (\overline{r_1}, \ldots, \overline{r_s}, \overline{r''_1}, r'_1, \ldots, r''_t, r'_t).$$
Let
\[\mathbf{r} = (r_1, \ldots, r_s, r'_1, r''_1, \ldots, r'_t, r''_t), \]
where \(r_i \in G_i \) (\(1 \leq i \leq s \)), \(r'_j \in H'_j \) and \(r''_j \in H''_j \) (\(1 \leq j \leq t \)).

Then
\[\overline{\mathbf{r}} = (\overline{r_1}, \ldots, \overline{r_s}, \overline{r''_1}, r'_1, \ldots, \overline{r''_t}, r'_t). \]

When \(f \) and \(f^* \) are associates, for \(\mathbf{c} = (c_1, \ldots, c_\ell) \), \(\mathbf{c}' = (c'_1, \ldots, c'_\ell) \in (A[Y]/(f))^\ell \), define Hermitian inner product on \((A[Y]/(f))^\ell\) as

\[\langle \mathbf{c}, \mathbf{c}' \rangle = \sum_{i=1}^\ell c_i \overline{c'_i}. \] (6)
The Ring $R(A, m)$

Remark

When $\deg(f) = 1$, since $r \mapsto \bar{r}$ is identity, Hermitian inner product (6) is usual Euclidean inner product \cdot on A.
The Ring $R(A, m)$

Proposition

$a = (a_0, a_1, \ldots, a_{\ell-1}) \in R^\ell$ and $b = (b_0, b_1, \ldots, b_{\ell-1}) \in R^\ell$.

$$a_i = (a_{i1}, \ldots, a_{is}, a'_{i1}, a''_{i1}, \ldots, a'_{it}, a''_{it}),$$

$$b_i = (b_{i1}, \ldots, b_{is}, b'_{i1}, b''_{i1}, \ldots, b'_{it}, b''_{it}),$$

$a_{ij}, b_{ij} \in G_j$, $a'_{ij}, b'_{ij}, a''_{ij}, b''_{ij} \in H'_j$ (with H'_j, H''_j identified). Then

$$\langle a, b \rangle = \sum_{i=0}^{\ell-1} a_i \overline{b_i}$$

$$= \left(\sum_i a_{i1} b_{i1}, \ldots, \sum_i a_{is} \overline{b_{is}}, \sum_i a'_{i1} b''_{i1}, \sum_i a''_{i1} b'_{i1}, \ldots, \sum_i a'_{it} b''_{it}, \sum_i a''_{it} b'_{it} \right).$$

In particular, $\langle a, b \rangle = 0 \iff \sum_i a_{ij} \overline{b_{ij}} = 0$ (1 ≤ j ≤ s) and

$\sum_i a'_{ik} b''_{ik} = 0 = \sum_i a''_{ik} b'_{ik}$ (1 ≤ k ≤ t).
The Ring $R(A, m)$

Theorem

Linear code C over $R = A[Y]/(Y^m - 1)$ of length ℓ is self-dual wrt Hermitian inner product if and only if

$$C = \left(\bigoplus_{i=1}^{s} C_i \right) \oplus \left(\bigoplus_{j=1}^{t} \left(C'_j \oplus (C'_j)^\perp \right) \right),$$

C_i: self-dual code over G_i of length ℓ (wrt Hermitian inner product)

C'_j: linear code of length ℓ over H'_j

$(C'_j)^\perp$: dual wrt Euclidean inner product.
Finite Chain Rings

Assume: m and characteristic of A relatively prime

m is a unit in A
Assume: m and characteristic of A relatively prime

m is a unit in A

A: finite chain ring with maximal ideal (t)
Residue field $k = A/(t) = \mathbb{F}_q$.
Every element x of A can be expressed uniquely as

$$x = x_0 + x_1 t + \cdots + x_{d-1} t^{d-1},$$

where x_0, \ldots, x_{d-1} belong to Teichmüller set.
Galois Extensions

\(g_i, h_j, h_j^* \) – monic basic irreducible polynomials
\(G_i, H'_j \) and \(H''_j \) are Galois extensions of \(A \).

- Galois extensions of local ring are unramified
- Unique maximal ideal in such a Galois extension of \(A \) again generated by \(t \).
Frobenius & Trace

For B/A Galois extension, the Frobenius map $F : B \rightarrow B$ – map induced by $Y \mapsto Y^q$, acting as identity on A.

- e: degree of extension B over A
- Then F^e is identity.
Frobenius & Trace

For B/A Galois extension,

Frobenius map $F : B \rightarrow B$ – map induced by $Y \mapsto Y^q$, acting as identity on A.

e: degree of extension B over A

Then F^e is identity.

$x \in B$, trace

$$Tr_{B/A}(x) = x + F(x) + \cdots + F^{e-1}(x).$$
In (3),

\[R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}} \right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}} \right) \right). \]

Direct factors on RHS correspond to irreducible factors of \(Y^m - 1 \) in \(A[Y] \) (assumed \(a = 0 \)).
Fourier Transform

In (3),

$$R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}} \right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}} \right) \right).$$

Direct factors on RHS correspond to irreducible factors of $Y^m - 1$ in $A[Y]$ (assumed $a = 0$).

There is one-to-one correspondence between these factors and the q-cyclotomic cosets of $\mathbb{Z}/m\mathbb{Z}$.

$U_i \ (1 \leq i \leq s)$: cyclotomic coset corresponding to g_i,

V_j and $W_j \ (1 \leq j \leq t)$: cyclotomic cosets corresponding to h_j and h_j^*, respectively.
Fourier Transform

For $c = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1)$, its Fourier Transform: $\hat{c} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h$, where

$$\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh} = c(\zeta^h),$$

ζ: primitive mth root of 1 in some (sufficiently large) Galois extension of A.

San Ling

Quasi-Cyclic Codes over Rings
Fourier Transform

For \(c = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1) \),
its Fourier Transform: \(\hat{c} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h \), where

\[
\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh} = c(\zeta^h),
\]

\(\zeta \): primitive \(m \)th root of 1 in some (sufficiently large) Galois extension of \(A \).

The Fourier Transform gives rise to isomorphism (3).
Fourier Transform

For \(c = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1) \),
its Fourier Transform: \(\hat{c} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h \), where

\[
\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh} = c(\zeta^h),
\]

\(\zeta \): primitive \(m \)th root of 1 in some (sufficiently large) Galois extension of \(A \).

The Fourier Transform gives rise to isomorphism (3).

Inverse transform:

\[
c_g = m^{-1} \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h \zeta^{-gh} = m^{-1} \hat{c}(\zeta^{-g}).
\]
Fourier Transform

Well known:

- \(\hat{c}_{qh} = F(\hat{c}_h) \)
- for \(h \in U_i, \hat{c}_h \in G_i \), while for \(h \in V_j \) (resp. \(W_j \)), \(\hat{c}_h \in H'_j \) (resp. \(H''_j \)).
Fourier Transform

Well known:

- $\hat{c}_{qh} = F(\hat{c}_h)$
- for $h \in U_i$, $\hat{c}_h \in G_i$, while for $h \in V_j$ (resp. W_j), $\hat{c}_h \in H'_j$ (resp. H''_j).

Backward direction of (3):

G_i, H'_j and H''_j: Galois extensions of A corresponding to g_i, h_j and h_j^*, with corresponding cyclotomic cosets U_i, V_j and W_j.

For each i, fix some $u_i \in U_i$.
For each j, fix some $v_j \in V_j$ and $w_j \in W_j$.
Fourier Transform & Trace Formula

Let \(\hat{c}_i \in G_i, \hat{c}'_j \in H'_j \) and \(\hat{c}''_j \in H''_j \).

To \((\hat{c}_1, \ldots, \hat{c}_s, \hat{c}'_1, \ldots, \hat{c}'_t, \hat{c}''_1, \ldots, \hat{c}''_t)\),
associate \(\sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1)\), where

\[
mc_g = \sum_{i=1}^{s} \text{Tr}_{G_i/A}(\hat{c}_i \zeta^{-gu_i}) + \sum_{j=1}^{t} \left(\text{Tr}_{H'_j/A}(\hat{c}'_j \zeta^{-gv_j}) + \text{Tr}_{H''_j/A}(\hat{c}''_j \zeta^{-gw_j}) \right),
\]

\(\text{Tr}_{B/A} \): trace from \(B \) to \(A \).

Fourier Transform of vector \(x \): vector whose \(i \)th entry is Fourier Transform of \(i \)th entry of \(x \).

Trace of \(x \): vector whose coordinates are traces of coordinates of \(x \).
Trace Formula

Theorem

m relatively prime to characteristic of A.

Quasi-cyclic codes over A of length ℓm and of index ℓ given by following construction:

Write $Y^m - 1 = \delta g_1 \cdots g_s h_1 h_1^* \cdots h_t h_t^*$, $(\delta, g_i, h_j, h_j^*$ as earlier).

U_i, V_j, W_j: corresponding q-cyclotomic coset of $\mathbb{Z}/m\mathbb{Z}$.

$u_i \in U_i$, $v_j \in V_j$ and $w_j \in W_j$.

C_i, C_j', C_j'': codes of length ℓ over G_i, H_j', H_j'', resp.
Trace Formula

Theorem

For \(x_i \in C_i, \ y'_j \in C'_j, \ y''_j \in C''_j, \) *and* \(0 \leq g \leq m - 1:*

\[
 c_g = \sum_{i=1}^{s} Tr_{G_i/A}(x_i \zeta^{-gu_i}) + \sum_{j=1}^{t} (Tr_{H'_j/A}(y'_j \zeta^{-gv_j}) + Tr_{H''_j/A}(y''_j \zeta^{-gw_j})).
\]

Then \(C = \{ (c_0, \ldots, c_{m-1}) \mid x_i \in C_i, \ y'_j \in C'_j \) *and* \(y''_j \in C''_j \} \) *is quasi-cyclic code over* \(A \) *of length* \(\ell m \) *and of index* \(\ell.\)

Converse also true.

Moreover, \(C \) *self-dual* \(\Leftrightarrow \) *\(C_i \) self-dual wrt Hermitian inner product and* \(C''_j = (C'_j)^\perp \) *for each* \(j \) *wrt Euclidean inner product.*
Theorem

m: any positive integer.

Self-dual 2-quasi-cyclic codes over \mathbb{F}_q of length $2m$ exist \iff exactly one of following satisfied:

1. q is a power of 2;
2. $q = p^b$ (p prime $\equiv 1 \mod 4$); or
3. $q = p^{2b}$ (p prime $\equiv 3 \mod 4$).
Proof

Case I: m relatively prime to q
Proof

Case I: m relatively prime to q

Self-dual codes (wrt Euclidean inner product) of length 2 over \mathbb{F}_q exist if and only -1 is a square in \mathbb{F}_q – true when one of following holds:

1. q is a power of 2;
2. $q = p^b$ (p prime $\equiv 1 \mod 4$); or
3. $q = p^{2b}$ (p prime $\equiv 3 \mod 4$).
Case I: m relatively prime to q

Self-dual codes (wrt Euclidean inner product) of length 2 over \mathbb{F}_q exist if and only $−1$ is a square in \mathbb{F}_q – true when one of following holds:

1. q is a power of 2;
2. $q = p^b$ (p prime $\equiv 1$ mod 4); or
3. $q = p^{2b}$ (p prime $\equiv 3$ mod 4).

If self-dual 2-quasi-cyclic code over \mathbb{F}_q of length $2m$ exists, then by (3) there is self-dual code of length 2 over $G_1 = \mathbb{F}_q$. Hence conditions in Proposition are necessary.
Conversely, if any condition in Proposition satisfied, then there exists $i \in \mathbb{F}_q$ such that $i^2 + 1 = 0$.
Proof

Conversely, if any condition in Proposition satisfied, then there exists $i \in \mathbb{F}_q$ such that $i^2 + 1 = 0$.

Hence every finite extension of \mathbb{F}_q also contains such an i.
Conversely, if any condition in Proposition satisfied, then there exists \(i \in \mathbb{F}_q \) such that \(i^2 + 1 = 0 \).

Hence every finite extension of \(\mathbb{F}_q \) also contains such an \(i \).

Code generated by \((1, i)\) over any extension of \(\mathbb{F}_q \) is self-dual (wrt Euclidean and Hermitian inner products) of length 2. Hence existence of self-dual 2-quasi-cyclic code of length \(2m \) over \(\mathbb{F}_q \).
Proof

Case II: m not relatively prime to q
Proof

Case II: \(m \) not relatively prime to \(q \)

\(q = p^b \) and \(m = p^a m' \), where \(a > 0 \).

By (3), \(G_i \) are finite chain rings of depth \(p^a \).
Proof

Case II: \(m \) not relatively prime to \(q \)

\(q = p^b \) and \(m = p^a m', \) where \(a > 0. \)
By (3), \(G_i \) are finite chain rings of depth \(p^a. \)

Self-dual 2-quasi-cyclic code over \(F_q \) of length \(2m \) exists \(\iff \) for each \(i, \) there exists self-dual linear code of length 2 over \(G_i. \)
Proof

Case II: m not relatively prime to q

$q = p^b$ and $m = p^a m'$, where $a > 0$.
By (3), G_i are finite chain rings of depth p^a.

Self-dual 2-quasi-cyclic code over \mathbb{F}_q of length $2m$ exists \iff for each i, there exists self-dual linear code of length 2 over G_i.

Simplify notation

G: finite chain ring of depth $d = p^a$, with maximal ideal (t) and residue field \mathbb{F}_{q^e}.
(So G has q^{de} elements.)
Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$.
Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$.

Such a solution lifts to one in $G/(t^c)$, for any $1 \leq c \leq d$.
Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$.

Such a solution lifts to one in $G/(t^c)$, for any $1 \leq c \leq d$.

Hence, there exists $i \in G$ such that $i^2 + 1 = 0$.
Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$.

Such a solution lifts to one in $G/(t^c)$, for any $1 \leq c \leq d$.

Hence, there exists $i \in G$ such that $i^2 + 1 = 0$.

Clear: free code with generator matrix $(1, i)$ self-dual of length 2.
Proof

Necessity:

Assume q odd (case q even trivially true)
Proof

Necessity:

Assume q odd (case q even trivially true)

Let $G = G_1$ corresponding to $Y - 1$ in (3).

Depth d odd.

In fact, $G = \mathbb{F}_q[t]/(t)^p$ and $Y \mapsto Y^{-1}$ induces identity on G.

(Hermitian and Euclidean inner products coincide.)
Proof

Necessity:

Assume q odd (case q even trivially true)

Let $G = G_1$ corresponding to $Y - 1$ in (3).

Depth d odd.

In fact, $G = \mathbb{F}_q[t]/(t)^{p^a}$ and $Y \mapsto Y^{-1}$ induces identity on G. (Hermitian and Euclidean inner products coincide.)

Any nonzero element of G: $t^\lambda a$ (a unit in G).

Nonzero codeword of length 2 of one of:

(i) $(0, t^\mu b)$, (ii) $(t^\lambda a, 0)$ or (iii) $(t^\lambda a, t^\mu b)$.
Proof

Nonzero codeword of length 2 of one of:
(i) \((0, t^\mu b)\), (ii) \((t^\lambda a, 0)\) or (iii) \((t^\lambda a, t^\mu b)\).

For word of form (i) to be self-orthogonal, must have \(\mu \geq \frac{d+1}{2}\).
For word of type (ii) to be self-orthogonal, need \(\lambda \geq \frac{d+1}{2}\).
For word of type (iii) to be self-orthogonal, need \(t^2\lambda a^2 + t^2\mu b^2 = 0\).

If both \(\lambda, \mu \geq \frac{d+1}{2}\), then (7) automatically satisfied.
Proof

Nonzero codeword of length 2 of one of:
(i) \((0, t^\mu b)\), (ii) \((t^\lambda a, 0)\) or (iii) \((t^\lambda a, t^\mu b)\).

For word of form (i) to be self-orthogonal, must have \(\mu \geq \frac{d+1}{2}\).
Proof

Nonzero codeword of length 2 of one of:
(i) \((0, t^{\mu}b)\), (ii) \((t^{\lambda}a, 0)\) or (iii) \((t^{\lambda}a, t^{\mu}b)\).

For word of form (i) to be self-orthogonal, must have \(\mu \geq \frac{d+1}{2}\).

For word of type (ii) to be self-orthogonal, need \(\lambda \geq \frac{d+1}{2}\).
Proof

Nonzero codeword of length 2 of one of: (i) \((0, t^\mu b)\), (ii) \((t^\lambda a, 0)\) or (iii) \((t^\lambda a, t^\mu b)\).

For word of form (i) to be self-orthogonal, must have \(\mu \geq \frac{d+1}{2}\).

For word of type (ii) to be self-orthogonal, need \(\lambda \geq \frac{d+1}{2}\).

For word of type (iii) to be self-orthogonal, need

\[t^{2\lambda} a^2 + t^{2\mu} b^2 = 0. \tag{7} \]
Proof

Nonzero codeword of length 2 of one of:
(i) \((0, t^\mu b)\), (ii) \((t^\lambda a, 0)\) or (iii) \((t^\lambda a, t^\mu b)\).

For word of form (i) to be self-orthogonal, must have \(\mu \geq \frac{d+1}{2}\).
For word of type (ii) to be self-orthogonal, need \(\lambda \geq \frac{d+1}{2}\).
For word of type (iii) to be self-orthogonal, need
\[t^{2\lambda} a^2 + t^{2\mu} b^2 = 0. \] (7)

If both \(\lambda, \mu \geq \frac{d+1}{2}\),
then (7) automatically satisfied.
Proof

If at least one of them is at most $\frac{d-1}{2}$:
Proof

If at least one of them is at most \(\frac{d-1}{2} \):

If \(\lambda \neq \mu \),
then (7) never satisfied.

Hence, need \(\lambda = \mu \).
Proof

If at least one of them is at most \(\frac{d-1}{2} \):

If \(\lambda \neq \mu \),
then (7) never satisfied.

Hence, need \(\lambda = \mu \).
Then (7) implies

\[
a^2 + b^2 \in (t^{d-2\lambda}).
\]

(8)
Proof

If at least one of them is at most $\frac{d-1}{2}$:

If $\lambda \neq \mu$, then (7) never satisfied.

Hence, need $\lambda = \mu$.

Then (7) implies

$$a^2 + b^2 \in (t^{d-2\lambda}).$$

(8)

Hence, $a^2 + b^2 \in (t)$, so -1 is a square in \mathbb{F}_q.
Proof

If at least one of them is at most $\frac{d-1}{2}$:

If $\lambda \neq \mu$,
then (7) never satisfied.

Hence, need $\lambda = \mu$.
Then (7) implies

$$a^2 + b^2 \in (t^{d-2\lambda}).$$ \hspace{1cm} (8)

Hence, $a^2 + b^2 \in (t)$, so -1 is a square in \mathbb{F}_q.
Self-dual code of length 2 over G certainly contains at least a codeword of type (iii) (not enough words of other types).
$m = 3 \&$ Leech Lattice

$m = 3$
$A = \mathbb{Z}_4$
$GR(4, 2)$: unique Galois extension of \mathbb{Z}_4 of degree 2.
$m = 3 \ & \ Leech\ Lattice$

$m = 3$

$A = \mathbb{Z}_4$

$GR(4, 2)$: unique Galois extension of \mathbb{Z}_4 of degree 2.

$R = \mathbb{Z}_4 \oplus GR(4, 2)$
$m = 3 \ & \ Leech \ Lattice$

$m = 3$
$A = \mathbb{Z}_4$
$GR(4, 2)$: unique Galois extension of \mathbb{Z}_4 of degree 2.
$R = \mathbb{Z}_4 \oplus GR(4, 2)$

ℓ-quasi-cyclic code C over \mathbb{Z}_4 of length $3\ell - (C_1, C_2)$,
C_1: code over \mathbb{Z}_4 of length ℓ
C_2: code over $GR(4, 2)$ of length ℓ.
\[m = 3 \& \text{ Leech Lattice} \]

\[m = 3 \]
\[A = \mathbb{Z}_4 \]
\[GR(4, 2): \text{ unique Galois extension of } \mathbb{Z}_4 \text{ of degree 2.} \]
\[R = \mathbb{Z}_4 \oplus GR(4, 2) \]

\(\ell \)-quasi-cyclic code \(C \) over \(\mathbb{Z}_4 \) of length \(3\ell - (C_1, C_2) \),
\(C_1 \): code over \(\mathbb{Z}_4 \) of length \(\ell \)
\(C_2 \): code over \(GR(4, 2) \) of length \(\ell \).

\[C = \{(x + 2a' - b'|x - a' + 2b'|x - a' - b') \mid x \in C_1, \ a' + \zeta b' \in C_2 \}, \]

\(\zeta \in GR(4, 2) \) satisfies \(\zeta^2 + \zeta + 1 = 0 \).
$m = 3 \ & \ Leech \ Lattice$

C'_2: linear code of length ℓ over \mathbb{Z}_4

$C_2 := C'_2 + C'_2 \zeta$: linear code over $GR(4, 2)$.
$m = 3 \ & \text{Leech Lattice}$

C'_2: linear code of length ℓ over \mathbb{Z}_4

$C_2 := C'_2 + C'_2 \zeta$: linear code over $GR(4, 2)$.

Consider: $a = -2a' + b'$ and $b = -a' + 2b'$

Construction equivalent to $(x - a|x + b|x + a - b)$ construction, with $x \in C_1$ and $a, b \in C'_2$.
\(m = 3 \) & Leech Lattice

\(C_2' \): linear code of length \(\ell \) over \(\mathbb{Z}_4 \)

\(C_2 := C_2' + C_2' \zeta \): linear code over \(GR(4, 2) \).

Consider: \(a = -2a' + b' \) and \(b = -a' + 2b' \)

Construction equivalent to \((x - a|x + b|x + a - b)\) construction, with \(x \in C_1 \) and \(a, b \in C_2' \).

\(C_2' \): Klemm-like code \(\kappa_8 \) (over \(\mathbb{Z}_4 \))

\(C_1 \): self-dual \(\mathbb{Z}_4 \)-code \(O'_8 \), obtained from octacode \(O_8 \) by negating a single coordinate.
$m = 3$ & Leech Lattice

C'_2: linear code of length ℓ over \mathbb{Z}_4

$C_2 := C'_2 + C'_2 \zeta$: linear code over $GR(4, 2)$.

Consider: $a = -2a' + b'$ and $b = -a' + 2b'$

Construction equivalent to $(x - a | x + b | x + a - b)$ construction, with $x \in C_1$ and $a, b \in C'_2$.

C'_2: Klemm-like code κ_8 (over \mathbb{Z}_4)

C_1: self-dual \mathbb{Z}_4-code O'_8, obtained from octacode O_8 by negating a single coordinate.

$$\kappa_8 \triangle O'_8 := \{ (x - a | x + b | x + a - b) \mid x \in O'_8, \ a, b \in \kappa_8 \}.$$
$m = 3 \&$ Leech Lattice

C: \mathbb{Z}_4-linear code of length n
Quaternary lattice

$$\Lambda(C) = \{z \in \mathbb{Z}^n \mid z \equiv c \mod 4 \text{ for some } c \in C\}.$$
$m = 3 \text{ & Leech Lattice}$

C: \mathbb{Z}_4-linear code of length n
Quaternary lattice

$$\Lambda(C) = \{ z \in \mathbb{Z}^n \mid z \equiv c \mod 4 \text{ for some } c \in C \}.$$

Theorem

$\Lambda(\kappa_8 \Delta O_8')/2$ is the Leech lattice Λ_{24}.
Proof

From the \((x - a|x + b|x + a - b)\) construction, Clear: \(\kappa_8 \Delta O'_8\) is self-dual.
Proof

From the \((x - a|x + b|x + a - b)\) construction,
Clear: \(\kappa_8 \Delta O'_8\) is self-dual.

Code generated by \((-a, 0, a), (0, b, -b)\) and \((x, x, x)\),
\(a, b \in \kappa_8\) and \(x \in O'_8\).
Proof

From the \((x - a | x + b | x + a - b)\) construction,
Clear: \(\kappa_8 \Delta O_8'\) is self-dual.

Code generated by \((-a, 0, a), (0, b, -b)\) and \((x, x, x)\),
\(a, b \in \kappa_8\) and \(x \in O_8'\).

All have Euclidean weights \(\equiv 0\) mod 8.
Hence all words in code have weights divisible by 8.
Proof

From the \((x - a | x + b | x + a - b)\) construction,
Clear: \(\kappa_8 \Delta O'_8\) is self-dual.

Code generated by \((-a, 0, a), (0, b, -b)\) and \((x, x, x)\),
\(a, b \in \kappa_8\) and \(x \in O'_8\).

All have Euclidean weights \(\equiv 0 \mod 8\).
Hence all words in code have weights divisible by 8.
Hence, \(\Lambda(\kappa_8 \Delta O'_8)\) is even unimodular lattice.
Known: $\kappa_8 \cap O'_8 = 2O'_8$.
Remains to show: min Euclidean weight in lattice ≥ 16
Proof

Known: $\kappa_8 \cap O'_8 = 2O'_8$.
Remains to show: \min Euclidean weight in lattice ≥ 16

Suppose Euclidean weight of $(x - a | x + b | x + a - b)$ is 8, for some $a, b \in \kappa_8$ and $x \in O'_8$.
Proof

Known: \(\kappa_8 \cap O'_8 = 2O'_8 \).
Remains to show: min Euclidean weight in lattice \(\geq 16 \)

Suppose Euclidean weight of \((x - a|x + b|x + a - b)\) is 8, for some \(a, b \in \kappa_8\) and \(x \in O'_8\).

\(x \equiv 0 \mod 2\) and \(a \equiv b \equiv 0 \mod 2\).
Proof

Known: \(\kappa_8 \cap O'_8 = 2O'_8 \).

Remains to show: \(\min \text{ Euclidean weight in lattice} \geq 16 \)

Suppose Euclidean weight of \((x - a | x + b | x + a - b)\) is 8, for some \(a, b \in \kappa_8 \) and \(x \in O'_8 \).

\(x \equiv 0 \mod 2 \) and
\(a \equiv b \equiv 0 \mod 2 \).

Then \((x - a | x + b | x + a - b) = (x + a | x + b | x + a + b)\),
so has Euclidean weight at least 16.
$m = 6$ & Golay Code

$m = 6$
$A = \mathbb{F}_2$

$$R = (\mathbb{F}_2 + u\mathbb{F}_2) \oplus (\mathbb{F}_4 + u\mathbb{F}_4),$$

$$\mathbb{F}_2 + u\mathbb{F}_2 = \mathbb{F}_2[Y]/(Y - 1)^2$$ and $$\mathbb{F}_4 + u\mathbb{F}_4 = \mathbb{F}_2[Y]/(Y^2 + Y + 1)^2,$$

so $u^2 = 0$ in both $\mathbb{F}_2 + u\mathbb{F}_2$ and $\mathbb{F}_4 + u\mathbb{F}_4$.
$m = 6 \ & \text{Golay Code}$

C_1: unique $\mathbb{F}_2 + u\mathbb{F}_2$-code of length 4 whose Gray image is binary extended Hamming code with coordinates in reverse order
C_2: $\mathbb{F}_4 + u\mathbb{F}_4$-code $C_2' + C_2'\zeta$,
C_2': unique $\mathbb{F}_2 + u\mathbb{F}_2$-code of length 4 whose Gray image is binary extended Hamming code.
$m = 6$ & Golay Code

C_1: unique $\mathbb{F}_2 + u\mathbb{F}_2$-code of length 4 whose Gray image is binary extended Hamming code with coordinates in reverse order

C_2: $\mathbb{F}_4 + u\mathbb{F}_4$-code $C'_2 + C'_2\zeta$,

C'_2: unique $\mathbb{F}_2 + u\mathbb{F}_2$-code of length 4 whose Gray image is binary extended Hamming code.

Both C_1, C_2 self-dual:

Proposition

Binary extended Golay code is 4-quasi-cyclic.
Vandermonde Construction

A: finite chain ring
m: integer, unit in A

Suppose: A contains unit ζ of order m.

$$Y^m - 1 = (Y - 1)(Y - \zeta) \cdots (Y - \zeta^{m-1}).$$
Vandermonde Construction

(By Fourier Transform)
If \(f = f_0 + f_1 Y + \cdots + f_{m-1} Y^{m-1} \in A[Y]/(Y^m - 1) \),
where \(f_i \in A \) for \(0 \leq i \leq m - 1 \), then
\[
\begin{pmatrix}
 f_0 \\
 f_1 \\
 \vdots \\
 f_{m-1}
\end{pmatrix} = V^{-1} \begin{pmatrix}
 \hat{f}_0 \\
 \hat{f}_1 \\
 \vdots \\
 \hat{f}_{m-1}
\end{pmatrix},
\]

\(\hat{f}_i \): Fourier coefficients
\(V = (\zeta^{ij})_{0 \leq i,j \leq m-1} \): \(m \times m \) Vandermonde matrix.
Vandermonde Construction

\[\mathbf{a}_0, \ldots, \mathbf{a}_{m-1} \in \mathbb{A}^\ell: \text{ vectors.} \]

\[\mathbf{V}^{-1} \left(\begin{array}{c} \mathbf{a}_0 \\ \vdots \\ \mathbf{a}_i \\ \vdots \end{array} \right) \in \mathbb{R}^\ell. \]

- Vandermonde product
Theorem

A, \(m \) as above.

\(C_0, \ldots, C_{m-1} \): linear codes of length \(\ell \) over \(A \).

Then the Vandermonde product of \(C_0, \ldots, C_{m-1} \) is a quasi-cyclic code over \(A \) of length \(\ell m \) and of index \(\ell \).

Moreover, every \(\ell \)-quasi-cyclic code of length \(\ell m \) over \(A \) is obtained via the Vandermonde construction.
Codes over \mathbb{Z}_{2^k}

Note: \mathbb{Z}_{2^k} is not local.
Codes over \mathbb{Z}_{2k}

Note: \mathbb{Z}_{2k} is not local.

Self-dual code over \mathbb{Z}_{2k} is Type II if and only if Euclidean weight of every codeword multiple of $4k$.
Codes over \mathbb{Z}_{2^k}

Note: \mathbb{Z}_{2^k} is not local.

Self-dual code over \mathbb{Z}_{2^k} is Type II if and only if Euclidean weight of every codeword multiple of $4k$.

Let $2^k = p_1^{e_1} \cdots p_r^{e_r}$ (p_1, \ldots, p_r distinct primes).

For $f \in \mathbb{Z}_{2^k}[Y],

\frac{\mathbb{Z}_{2^k}[Y]}{(f)} = \frac{\mathbb{Z}_{p_1^{e_1}}[Y]}{(f)} \times \cdots \times \frac{\mathbb{Z}_{p_r^{e_r}}[Y]}{(f)}.

(9)
Codes over \mathbb{Z}_{2k}

$Y^2 + Y + 1$ irreducible modulo 2,
so $Y^2 + Y + 1$ irreducible modulo $2k$ for all k.
Codes over \mathbb{Z}_{2k}

$Y^2 + Y + 1$ irreducible modulo 2, so $Y^2 + Y + 1$ irreducible modulo $2k$ for all k.

Suppose k relatively prime to 3. Then 3 is unit in $\mathbb{Z}_{p_i^{e_i}}$ for every $1 \leq i \leq r$.

San Ling Quasi-Cyclic Codes over Rings
Y^2 + Y + 1 irreducible modulo 2,
so Y^2 + Y + 1 irreducible modulo 2k for all k.

Suppose k relatively prime to 3.
Then 3 is unit in \(\mathbb{Z}_{p_i^{e_i}} \) for every 1 \(\leq i \leq r \).

Y - 1, Y^2 + Y + 1 relatively prime in \(\mathbb{Z}_{p_i^{e_i}}[Y] \), as

\[1 = 3^{-1}(Y^2 + Y + 1) + 3^{-1}(Y + 2)(Y - 1), \]

so,

\[\mathbb{Z}_{p_i^{e_i}}[Y] \frac{(Y^3 - 1)}{(Y^3 - 1)} = \mathbb{Z}_{p_i^{e_i}} \oplus \frac{\mathbb{Z}_{p_i^{e_i}}[Y]}{(Y^2 + Y + 1)}, \tag{10} \]

for every 1 \(\leq i \leq r \).
Therefore,

\[\frac{\mathbb{Z}_{2k}[Y]}{(Y^3 - 1)} = \mathbb{Z}_{2k} \oplus \frac{\mathbb{Z}_{2k}[Y]}{(Y^2 + Y + 1)}. \]

(k relatively prime to 3)
Therefore,

\[
\frac{\mathbb{Z}_{2^k}[Y]}{(Y^3 - 1)} = \mathbb{Z}_{2^k} \oplus \frac{\mathbb{Z}_{2^k}[Y]}{(Y^2 + Y + 1)}.
\]

\(k\) relatively prime to 3

\(\ell\)-quasi-cyclic code of length \(3\ell\) over \(\mathbb{Z}_{2^k}\) \(\leftrightarrow\) \((C_1, C_2)\),

\(C_1\): code of length \(\ell\) over \(\mathbb{Z}_{2^k}\)

\(C_2\): code of length \(\ell\) over \(\mathbb{Z}_{2^k}[Y]/(Y^2 + Y + 1)\).
Proposition

k: integer coprime with 3
C: self-dual code over \mathbb{Z}_{2k}.

Then C Type II ℓ-quasi-cyclic code of length 3ℓ if and only if its \mathbb{Z}_{2k} component C_1 of Type II.
Proof

Necessity:

C contains (x, x, x), where x ranges over C_1, and, by hypothesis, $(4k, 3) = 1$.

Proof

Necessity:

C contains (x, x, x), where x ranges over C_1, and, by hypothesis, $(4k, 3) = 1$.

Sufficiency:

A spanning set of codewords of Euclidean weights $\equiv 0 \mod 4k$ is

$$(x, x, x), \ (-a, b, a - b),$$

with x running over C_1, and $a + \zeta b$ running over C_2.
Proof

Note: self-duality of C_2 entails $(a + \zeta b)(a + \overline{\zeta} b) = 0$.
Proof

Note: self-duality of C_2 entails $(a + \zeta b)(a + \overline{\zeta} b) = 0$.
Since

$$\zeta + \overline{\zeta} = -1 \text{ & } \zeta \overline{\zeta} = 1,$$

have

$$a \cdot a + b \cdot b - a \cdot b \equiv 0 \mod 2k.$$
Proof

Note: self-duality of C_2 entails $(a + \zeta b)(a + \bar{\zeta}b) = 0$.

Since

$$\zeta + \bar{\zeta} = -1 & \zeta\bar{\zeta} = 1,$$

have

$$a \cdot a + b \cdot b - a \cdot b \equiv 0 \mod 2k.$$

By bilinearity of $(\ , \)$:

$$(a - b, a - b) = a \cdot a + b \cdot b - 2a \cdot b,$$

Norm of $(-a, b, a - b)$:

$$a \cdot a + b \cdot b + (a - b) \cdot (a - b) = 2(a \cdot a + b \cdot b - a \cdot b),$$

multiple of $4k$.
Back to local rings.
Back to local rings.

For simplicity, restrict to \mathbb{Z}_{p^r}, $(m, p) = 1$

$GR(p^r, \ell)$: Galois ring of degree ℓ over \mathbb{Z}_{p^r}
Back to local rings.

For simplicity, restrict to \mathbb{Z}_{p^r}, $(m, p) = 1$

$GR(p^r, \ell)$: Galois ring of degree ℓ over \mathbb{Z}_{p^r}

Natural isomorphism:

$$GR(p^r, \ell)^m \rightarrow GR(p^r, \ell)[Y]/(Y^m - 1)$$

$$(c_0, \ldots, c_{m-1}) \mapsto c_0 + c_1 Y + \cdots + c_{m-1} Y^{m-1}$$
Back to local rings.

For simplicity, restrict to \(\mathbb{Z}_{p^r} \), \((m, p) = 1 \)

\(GR(p^r, \ell) \): Galois ring of degree \(\ell \) over \(\mathbb{Z}_{p^r} \)

Natural isomorphism:

\[
GR(p^r, \ell)^m \rightarrow GR(p^r, \ell)[Y]/(Y^m - 1)
\]

\((c_0, \ldots, c_{m-1}) \leftrightarrow c_0 + c_1 Y + \cdots + c_{m-1} Y^{m-1} \)

\(T^\ell \leftrightarrow \text{Multiplication by } Y \)
Alternative Description

Isomorphism between $\mathbb{Z}_{p^r}^\ell m$ and $GR(p^r, \ell)^m$:

\[
\begin{align*}
\mathbb{Z}_{p^r}^\ell m & \rightarrow GR(p^r, \ell)^m \\
(c_0, c_1, \ldots, c_0, \ell-1, \ldots, c_{m-1,0}, \ldots, c_{m-1,\ell-1}) & \mapsto (c_0, \ldots, c_{m-1})
\end{align*}
\]

where

\[c_i = c_{i,0} + c_{i,1} \xi + \cdots + c_{i,\ell-1} \xi^{\ell-1} \in GR(p^r, \ell),\]

ξ: root of monic basic irreducible polynomial of deg ℓ over \mathbb{Z}_{p^r}
Isomorphism between $\mathbb{Z}_{p^r}^\ell m$ and $GR(p^r, \ell)^m$:

$$\mathbb{Z}_{p^r}^\ell m \rightarrow GR(p^r, \ell)^m$$

$$(c_{00}, c_{01}, \ldots, c_{0,\ell-1}, \ldots, c_{m-1,0}, \ldots, c_{m-1,\ell-1}) \mapsto (c_0, \ldots, c_{m-1})$$

where

$$c_i = c_{i,0} + c_{i,1} \xi + \cdots + c_{i,\ell-1} \xi^{\ell-1} \in GR(p^r, \ell),$$

ξ: root of monic basic irreducible polynomial of deg ℓ over \mathbb{Z}_{p^r}

T^ℓ on LHS \leftrightarrow cyclic shift on RHS
Hence, isomorphism between $\mathbb{Z}_{p^r}^{\ell m}$ and $GR(p^r, \ell)[Y]/(Y^m - 1)$.
Hence, isomorphism between $\mathbb{Z}_{p^r}^{\ell m}$ and $GR(p^r, \ell)[Y]/(Y^m - 1)$.

$C \subseteq \mathbb{Z}_{p^r}^{\ell m}$: quasi-cyclic code of index ℓ

C: \mathbb{Z}_{p^r}-submodule of $GR(p^r, \ell)[Y]/(Y^m - 1)$.
Hence, isomorphism between $\mathbb{Z}_{p^r}^{\ell m}$ and $GR(p^r, \ell)[Y]/(Y^m - 1)$.

$C \subseteq \mathbb{Z}_{p^r}^{\ell m}$: quasi-cyclic code of index ℓ

C: \mathbb{Z}_{p^r}-submodule of $GR(p^r, \ell)[Y]/(Y^m - 1)$.

Easy: $C \in GR(p^r, \ell)[Y]/(Y^m - 1)$ clearly invariant under multiplication by Y.

So, C: $\mathbb{Z}_{p^r}[Y]/(Y^m - 1)$-submodule of $GR(p^r, \ell)[Y]/(Y^m - 1)$.
If \(C \) as \(\mathbb{Z}_{p^r}[Y]/(Y^m-1) \)-submodule of \(GR(p^r, \ell)[Y]/(Y^m-1) \) generated by \(c_1(Y), \ldots, c_t(Y) \), then

\[
C = \{ a_1(Y)c_1(Y) + \cdots + a_t(Y)c_t(Y) \mid a_i(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m-1) \}.
\]
Generators

If C as $\mathbb{Z}_{p^r}[Y]/(Y^m - 1)$-submodule of $GR(p^r, \ell)[Y]/(Y^m - 1)$ generated by $c_1(Y), \ldots, c_t(Y)$, then

$$C = \{a_1(Y)c_1(Y) + \cdots + a_t(Y)c_t(Y) \mid a_i(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1)\}.$$

As \mathbb{Z}_{p^r}-submodule, generated by

$$\{c_1(Y), Yc_1(Y), \ldots, Y^{m-1}c_1(Y), \ldots, c_t(Y), Yc_t(Y), \ldots, Y^{m-1}c_t(Y)\}.$$
Generators

If \(C \) as \(\mathbb{Z}_{p^r}[Y]/(Y^m - 1) \)-submodule of \(GR(p^r, \ell)[Y]/(Y^m - 1) \) generated by \(c_1(Y), \ldots, c_t(Y) \), then

\[
C = \{ a_1(Y)c_1(Y) + \cdots + a_t(Y)c_t(Y) \mid a_i(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1) \}.
\]

As \(\mathbb{Z}_{p^r} \)-submodule, generated by

\[
\{ c_1(Y), Yc_1(Y), \ldots, Y^{m-1}c_1(Y), \ldots, c_t(Y), Yc_t(Y), \ldots, Y^{m-1}c_t(Y) \}.
\]

\(t = 1 \): 1-generator quasi-cyclic code
Proposition

\(C \): nonzero cyclic code of length \(m \) over \(\text{GR}(p^r, \ell) \).

\(C \) is free module over \(\text{GR}(p^r, \ell) \) if and only if \(C \) is generated by a monic polynomial \(g(Y) \) dividing \(Y^m - 1 \) over \(\text{GR}(p^r, \ell) \).

Then:

\(C \) of rank \(m - \deg g \), and

basis \(g(Y), Yg(Y), \ldots, Y^{m-\deg g-1}g(Y) \).
Proof

Sufficiency:

There exists monic $h(Y)$ such that $Y^m - 1 = g(Y)h(Y) \equiv 0 \pmod{Y^m - 1}$.

Say $\deg g = m - k$ and $\deg h = k$.

Then $Y^t g(Y) (t \geq k)$ is a linear combination (over $GR(p^r, \ell)$) of $g(Y)$, $Y g(Y)$, ..., $Y^{k-1} g(Y)$.

Hence, every element of C (as ideal in $GR(p^r, \ell)[Y] / (Y^m - 1)$) is a linear combination of $g(Y)$, $Y g(Y)$, ..., $Y^{k-1} g(Y)$.
Proof

Sufficiency:

There exists monic $h(Y)$ such that

$$Y^m - 1 = g(Y)h(Y) \equiv 0 \pmod{Y^m - 1}.$$

Say $\deg g = m - k$ and $\deg h = k$.

San Ling

Quasi-Cyclic Codes over Rings
Proof

Sufficiency:

There exists monic \(h(Y) \) such that

\[Y^m - 1 = g(Y)h(Y) \equiv 0 \pmod{Y^m - 1}. \]

Say \(\deg g = m - k \) and \(\deg h = k \).

Then \(Y^t g(Y) \) \((t \geq k)\) is linear combination (over \(GR(p^r, \ell) \)) of \(g(Y), Yg(Y), \ldots, Y^{k-1}g(Y) \).
Proof

Sufficiency:

There exists monic $h(Y)$ such that

$$Y^m - 1 = g(Y)h(Y) \equiv 0 \pmod{Y^m - 1}.$$

Say $\deg g = m - k$ and $\deg h = k$.

Then $Y^t g(Y) \ (t \geq k)$ is linear combination (over $GR(p^r, \ell)$) of $g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)$.

Hence, every element of C (as ideal in $GR(p^r, \ell)[Y]/(Y^m - 1)$) is linear combination of $g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)$.
Proof

If there exist \(a_0, a_1, \ldots, a_{k-1} \in GR(p^r, \ell) \) such that

\[
a_0 g(Y) + a_1 Yg(Y) + \cdots + a_{k-1} Y^{k-1}g(Y) = 0,
\]

then

\[
Y^m - 1 | (a_0 + a_1 Y + \cdots + a_{k-1} Y^{k-1})g(Y).
\]
Proof

If there exist \(a_0, a_1, \ldots, a_{k-1} \in GR(p^r, \ell) \) such that

\[
a_0 g(Y) + a_1 Yg(Y) + \cdots + a_{k-1} Y^{k-1}g(Y) = 0,
\]

then

\[
Y^m - 1 | (a_0 + a_1 Y + \cdots + a_{k-1} Y^{k-1})g(Y).
\]

By degree consideration, \(a_0 = \ldots = a_{k-1} = 0 \).
Proof

If there exist $a_0, a_1, \ldots, a_{k-1} \in GR(p^r, \ell)$ such that

$$a_0g(Y) + a_1 Yg(Y) + \cdots + a_{k-1} Y^{k-1}g(Y) = 0,$$

then

$$Y^m - 1 | (a_0 + a_1 Y + \cdots + a_{k-1} Y^{k-1})g(Y).$$

By degree consideration, $a_0 = \ldots = a_{k-1} = 0$.

Hence, C free, of rank $k = m - \deg g$, and basis $g(Y), Yg(Y), \ldots, Y^{m-\deg g-1}g(Y)$.
Proof

Necessity:
Proof

Necessity:

Suppose C free with basis c_1, \ldots, c_s.
Proof

Necessity:

Suppose C free with basis c_1, \ldots, c_s.

$C \cong GR(p^r, \ell)^s \Rightarrow C \pmod{p} \cong \mathbb{F}_{p^s}^\ell$

Known: C generated by monic polynomial $g(Y)$ over $GR(p^r, \ell)$
Proof

Necessity:

Suppose C free with basis c_1, \ldots, c_s.

$C \simeq GR(p^r, \ell)^s \Rightarrow C \pmod{p} \simeq \mathbb{F}_p^s$

Known: C generated by monic polynomial $g(Y)$ over $GR(p^r, \ell)$

Then: $C \pmod{p}$ generated by $g(Y) \pmod{p}$.
Proof

\[\text{deg } g = \text{deg}(g \pmod{p}) \text{ (g monic)} \]
Proof

\[\deg g = \deg(g \pmod{p}) \quad (g \text{ monic}) \]

Size of \(C \pmod{p} \) implies \(\deg g = m - s \).
Proof

\[\deg g = \deg (g \pmod{p}) \quad (g \text{ monic}) \]

Size of \(C \pmod{p} \) implies \(\deg g = m - s \).

Easy: \(\{g(Y), Yg(Y), \ldots, Y^{s-1}g(Y)\} \) linearly indep over \(GR(p^r, \ell) \),
hence basis for \(C \).
Proof

\(Y^s g(Y) \in C \Rightarrow \) there exists monic \(a(Y) \) such that \(a(Y)g(Y) = 0 \), i.e., \(Y^m - 1 \mid a(Y)g(Y) \).
Proof

\[Y^s g(Y) \in C \Rightarrow \text{there exists monic } a(Y) \text{ such that } a(Y)g(Y) = 0, \]
i.e., \(Y^m - 1 \mid a(Y)g(Y) \).

Considering degrees, \(Y^m - 1 = a(Y)g(Y) \), i.e., \(g(Y) \mid Y^m - 1 \).
1-Generator Codes

As \(\mathbb{Z}_{p^r}[Y]/(Y^m - 1) \)-submodule of \(GR(p^r, \ell)[Y]/(Y^m - 1) \),

\[
C = \{ a(Y)g(Y) \mid a(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1) \}.
\]
1-Generator Codes

As $\mathbb{Z}_{p^r}[Y]/(Y^m - 1)$-submodule of $GR(p^r, \ell)[Y]/(Y^m - 1)$,

$$C = \{ a(Y)g(Y) \mid a(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1) \}.$$

$$g(Y) = (g_0(Y), \ldots, g_{\ell-1}(Y)),$$

$$g_i(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1).$$
Theorem

C: 1-generator ℓ-QC code over \mathbb{Z}_{p^r} of length $n = m\ell$ with generator

$$g(Y) = (g(Y)f_0(Y), g(Y)f_1(Y), \ldots, g(Y)f_{\ell-1}(Y)),$$

$g(Y)|Y^m - 1,$
$g(Y), f_i(Y) \in \mathbb{Z}_{p^r}[Y]/(Y^m - 1),$
$(f_i(Y), h(Y)) = 1$, where $h(Y) = (Y^m - 1)/g(Y)$.

Then: C free \mathbb{Z}_{p^r}-module of rank $m - \deg g$, with basis
$
\{g(Y), Yg(Y), \ldots, Y^{m-\deg g-1}g(Y)\}.$
Proof

Write \(g(Y)h(Y) = Y^m - 1 \).
If \(\deg g = m - k \), then \(\deg h = k \).
Proof

Write \(g(Y)h(Y) = Y^m - 1 \).
If \(\deg g = m - k \), then \(\deg h = k \).
Every codeword in \(C \):

\[
c(Y) = a(Y)g(Y).
\]
Proof

Write \(g(Y)h(Y) = Y^m - 1 \).

If \(\deg g = m - k \), then \(\deg h = k \).

Every codeword in \(C \):

\[
\mathbf{c}(Y) = a(Y)g(Y).
\]

By Division Algorithm,

\[
a(Y) = q(Y)h(Y) + r(Y),
\]

\(\deg r < \deg h \) or \(r(Y) = 0 \).
Proof

Write \(g(Y)h(Y) = Y^m - 1 \).

If \(\deg g = m - k \), then \(\deg h = k \).

Every codeword in \(C \):

\[
c(Y) = a(Y)g(Y).
\]

By Division Algorithm,

\[
a(Y) = q(Y)h(Y) + r(Y),
\]

\(\deg r < \deg h \) or \(r(Y) = 0 \).

Hence, \(c(Y) = a(Y)g(Y) = r(Y)g(Y) \).

Therefore, \(C \) generated by \(\{g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)\} \).
Need to show: \(\{ g(Y), Yg(Y), \ldots, Y^{k-1}g(Y) \} \) linearly independent.
Proof

Need to show: \(\{g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)\} \) linearly independent.

Suppose there are \(a_0, \ldots, a_{k-1} \in \mathbb{Z}_{p^r} \) such that

\[
\sum_{i=0}^{k-1} a_i Y^i g(Y) = 0.
\]
Proof

Need to show: \(\{g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)\} \) linearly independent.

Suppose there are \(a_0, \ldots, a_{k-1} \in \mathbb{Z}_{p^r} \) such that

\[
\sum_{i=0}^{k-1} a_i Y^i g(Y) = 0.
\]

Write \(a(Y) = \sum_{i=0}^{k-1} a_i Y^i \).

Then: \(a(Y)f_i(Y)g(Y) = 0 \) in \(\mathbb{Z}_{p^r}[Y]/(Y^m - 1) \) for all \(i \),
i.e., \(Y^m - 1 | a(Y)f_i(Y)g(Y) \) for all \(i \).
Proof

Equivalently, \(\frac{Y^{m-1}}{g(Y)} | a(Y)f_i(Y) \).
Proof

Equivalently, \(\frac{Y^{m-1}}{g(Y)} | a(Y)f_i(Y) \).

Since \((f_i(Y), (Y^m - 1)/g(Y)) = 1 \), follows that \(h(Y) | a(Y) \).
Proof

Equivalently, \(\frac{Y^{m-1}}{g(Y)} | a(Y)f_i(Y) \).

Since \((f_i(Y), (Y^m - 1)/g(Y)) = 1\), follows that \(h(Y)|a(Y)\).

Considering degrees, \(a(Y) = 0\).
Proof

Equivalently, \(\frac{Y^m - 1}{g(Y)} | a(Y)f_i(Y) \).

Since \((f_i(Y), (Y^m - 1)/g(Y)) = 1\), follows that \(h(Y) | a(Y) \).

Considering degrees, \(a(Y) = 0 \).

Hence, \(\{g(Y), Yg(Y), \ldots, Y^{k-1}g(Y)\} \) linearly independent.